Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Ther Drug Carrier Syst ; 41(4): 39-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305341

RESUMO

Rheumatoid arthritis (RA) is classified as a chronic inflammatory autoimmune disorder, associated with a varied range of immunological changes, synovial hyperplasia, cartilage destructions, as well as bone erosion. The infiltration of immune-modulatory cells and excessive release of proinflammatory chemokines, cytokines, and growth factors into the inflamed regions are key molecules involved in the progression of RA. Even though many conventional drugs are suggested by a medical practitioner such as DMARDs, NSAIDs, glucocorticoids, etc., to treat RA, but have allied with various side effects. Thus, alternative therapeutics in the form of herbal therapy or phytomedicine has been increasingly explored for this inflammatory disorder of joints. Herbal interventions contribute substantial therapeutic benefits including accessibility, less or no toxicity and affordability. But the major challenge with these natural actives is the need of a tailored approach for treating inflamed tissues by delivering these bioactive agentsat an appropriate dose within the treatment regimen for an extended periodof time. Drug incorporated with wide range of delivery systems such as liposomes, nanoparticles, polymeric micelles, and other nano-vehicles have been developed to achieve this goal. Thus, inclinations of modern treatment are persuaded on the way to herbal therapy or phytomedicines in combination with novel carriers is an alternative approach with less adverse effects. The present review further summarizes the significanceof use of phytocompounds, their target molecules/pathways and, toxicity and challenges associated with phytomolecule-based nanoformulations.


Assuntos
Antirreumáticos , Artrite Reumatoide , Sinovite , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Lipossomos , Sinovite/complicações , Sinovite/tratamento farmacológico , Citocinas/uso terapêutico , Antirreumáticos/uso terapêutico , Sistemas de Liberação de Medicamentos
2.
J Environ Sci (China) ; 92: 18-27, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430121

RESUMO

Arsenic (As)-toxicity is recognized as one of the major environmental problems, affecting productivity of crops worldwide, thereby threatening sustainable agriculture and food security. Progression in nanotechnology and its impacts have brought up concerns about the application of engineered nanoparticles (NPs) in various sectors of the economy, including the field of agronomy. Among various NPs, there has been a rising amount of interest regarding the effects of titanium NPs (TiNPs) on plants growth and development, and their fate of abiotic stress tolerance. Hence, the present study was aimed to assess the ameliorative potentialities of chemically and biologically/green synthesized TiNPs to alleviate As-induced toxic responses in Vigna radiata L. The results revealed that exposure to As hindered the growth indices (radicle length and biomass) and membrane integrity, while were improved with the application of chemical and green synthesized TiNPs. In addition, treatment of As provoked the accretion of reactive oxygen species (superoxide and hydrogen peroxide) and malondialdehyde (a lipid peroxidized product), but were diminished by the supplementation of chemical and green manufactured TiNPs. The experimental data also signified that exogenous application of chemical and green synthesized TiNPs conferred tolerance to As-induced oxidative injuries via perking-up the expressions of antioxidant genes and enzyme systems viz; superoxide dismutase and catalase. Therefore, the present study inferred that chemically and green synthesized TiNPs, particularly green manufactured, effectively mitigated the adverse impacts of As by augmenting antioxidant machinery, thereby proving its potentiality in the alleviation of As-toxicity, at least in Vignaradiata L.


Assuntos
Arsênio , Nanopartículas , Vigna , Antioxidantes , Catalase , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Titânio
3.
J Sep Sci ; 38(20): 3622-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26257211

RESUMO

Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants.


Assuntos
Eletroforese em Gel Bidimensional , Folhas de Planta/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA